Director’s message

A hearty warm welcome to all visitors to the page of the University of Guyana Open Education Programme! The Open Education Programme of the University was established in January 2014 with the primary aim of providing educational opportunities to those who wish to undertake undergraduate degree programmes through distance and online mode of delivery.

This quest is borne out of the desire of the University to extend the frontier of her services to those in the hinterland of the vast landscape of Guyana; and others who by constraints of work and/or family commitment cannot take full advantage of the convectional face-to-face offerings of the University.

For a start, four programmes are offered, namely – BSc Criminology and Psychological Studies; BSc Environmental Management and Technology; BSc Computing and Information Technology; and lastly, a combined degree - BSc Mathematics and Physics.

This initial takeoff of the programmes is done in collaboration with the Open University, United Kingdom that has 46 years of success story worldwide in open education system. We are guided by the need to provide quality assurance in all our offerings.

There are Regional Coordinators who together with the course tutors provide administrative and tutorial support to students.

For our prospective students, it is vital to realise that we tend to limit what we are capable of achieving by our mind set and perceived obstacles to what we are capable of becoming. It is crucial to step out of our comfort zone and be achievement motivated.

Remember – “Whatever the mind of man can conceive and believe, it can achieve!” – Napoleon Hill

Abraham Ogowewo

Abraham Ogowewo

DIRECTOR
Abraham Ogowewo
BSc. Edu, MBA, MEd
Contents

AVAILABLE PROGRAMMES:

- Bachelor of Science in Mathematics and Physics 3-14
- Bachelor of Science in Computing and Information Technology 15-23
- Bachelor of Science in Environmental Management and Technology 24-30
- Bachelor of Social Science in Criminology and Psychological Studies 31-38
UNIT OFFERINGS

Bachelor of Science in Mathematics and Physics - 001D

PROGRAMME DESCRIPTION

This degree covers an equal amount of topics in mathematics and science, specializing in applied mathematics and physics at Levels 1, 2, 3 and 4. Graduates will secure understanding of physical concepts together with a sound knowledge of the mathematics that underlies the physics. They will have a broad understanding of the concepts of modern physics (including Newtonian mechanics, special relativity, electromagnetism and quantum mechanics); and an understanding of, and practice in the use of, basic tools of applied mathematics (including mathematical methods, mathematical modelling and numerical analysis). The programme also ensures that participants are familiar with mathematical software package and have experience of communicating mathematical arguments and conclusions.

Entry Requirements

001D - Criterion 1- At least five (5) subjects CXC/CSEC General Proficiency (Grade 1, II or III) or equivalent, which must include English Language and Mathematics.

001D - Criterion 2- Mature applicant (26 years and over) with lesser qualification but who has a pass at the University of Guyana Entrance Examination (UGEE).

Duration

Within the context of the Open Education philosophy the duration depends on the entry point and how fast an individual can progress. The programme is organized into four (4) stages: and is designed to be completed between 4 to 8 years.

Programme Evaluation and Grading Scheme

The programme will be evaluated through course work of four (4) assignments with a weight of 10% each (total 40%) and final examination with a weight of 60%.
PROGRAMME DETAILS

Students are expected to complete 370 credits of studies in four stages to be awarded the degree. This is arranged into 90/100 credits per stage.

<table>
<thead>
<tr>
<th>Stage</th>
<th>UG Course code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ENG 1105</td>
<td>Introduction to the Use of English</td>
<td>10</td>
</tr>
<tr>
<td>1</td>
<td>SCO1001</td>
<td>Exploring Science</td>
<td>60</td>
</tr>
<tr>
<td>1</td>
<td>MTO1001</td>
<td>Essential Mathematics 1</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100 credits</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>MTO2001</td>
<td>Essential Mathematics 2</td>
<td>30</td>
</tr>
<tr>
<td>2</td>
<td>PHO2001</td>
<td>The Physical world</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td></td>
<td>90 credits</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>MTO 3001</td>
<td>Vector analysis</td>
<td>10 credits</td>
</tr>
<tr>
<td>3</td>
<td>MTO3002</td>
<td>Mathematical methods</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>*One course to be selected out of the three.</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>MTO3003</td>
<td>Mathematical methods, models and modeling.</td>
<td>60</td>
</tr>
<tr>
<td>3</td>
<td>PHO3001*</td>
<td>Electromagnetism</td>
<td>30</td>
</tr>
<tr>
<td>3</td>
<td>PHO3002*</td>
<td>Waves, diffusion and variational principles.</td>
<td>30</td>
</tr>
<tr>
<td>3</td>
<td>MTO3004*</td>
<td>Mathematical methods and fluid mechanics.</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td></td>
<td>+ Any three courses from the list of seven.</td>
<td>90 credits</td>
</tr>
<tr>
<td>4</td>
<td>PHO4001+</td>
<td>The Quantum world</td>
<td>30</td>
</tr>
<tr>
<td>4</td>
<td>PHO4002+</td>
<td>Astrophysics</td>
<td>30</td>
</tr>
<tr>
<td>4</td>
<td>PHO4003+</td>
<td>The relativistic Universe</td>
<td>30</td>
</tr>
<tr>
<td>4</td>
<td>PHO4004+</td>
<td>Optimization</td>
<td>30</td>
</tr>
<tr>
<td>4</td>
<td>PHO4005+</td>
<td>Graphs, networks, and design</td>
<td>30</td>
</tr>
<tr>
<td>4</td>
<td>PHO4006+</td>
<td>Complex analysis</td>
<td>30</td>
</tr>
<tr>
<td>4</td>
<td>PHO4007+</td>
<td>Application of probability</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td></td>
<td>90 credits</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>370 credits</td>
<td></td>
</tr>
</tbody>
</table>

*One course to be selected out of the three.
+ Any three courses from the list of seven.
Grading Scheme:

<table>
<thead>
<tr>
<th>Grade</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>100 - 75%</td>
</tr>
<tr>
<td>B</td>
<td>74 - 65%</td>
</tr>
<tr>
<td>C</td>
<td>64 - 55%</td>
</tr>
<tr>
<td>D</td>
<td>54 - 40%</td>
</tr>
<tr>
<td>F</td>
<td>39% & below-Fail</td>
</tr>
</tbody>
</table>

COURSE DESCRIPTION

<table>
<thead>
<tr>
<th>Course Code</th>
<th>ENG 1105</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course Title</td>
<td>Introduction to the Use of English</td>
</tr>
<tr>
<td>Number of Credit</td>
<td>4 (UG)</td>
</tr>
<tr>
<td>Programme Stage</td>
<td>One</td>
</tr>
<tr>
<td>Mode of Delivery</td>
<td>Distance Mode</td>
</tr>
</tbody>
</table>

Course summary

The Introduction to the Use of English is a foundation course required for students who enter the University of Guyana and are largely from Creole speaking backgrounds. The course introduces students to language as it is used in academic settings and targets the development of reading and writing skills for the tasks required at university. It aims to provide interactive settings for students to develop and increase their language awareness and attain confidence to aim for mastery of oral and written Standard English.
Course summary
This key introductory Level 1 course is an ideal starting point for studying the natural sciences – astronomy and planetary science; biology; chemistry, earth and environmental science; and physics. Using a blend of text and online study materials, this wide-ranging course investigates the major scientific issues affecting human society in the twenty-first century. The students will explore the fundamentals of modern science and develop important scientific concepts and skills to give them a solid foundation for studying science at a higher level. They should have some basic mathematical skills and knowledge of basic science concepts before they begin.

Course summary
This key introductory course provides a broad and enjoyable foundation for university-level mathematics, but requires some prior knowledge. It teaches the essential ideas and techniques that underpin university-level study in mathematics and mathematical subjects such as physics, engineering and economics. Use mathematical software to solve problems. The students will develop skills in communicating results and defining problems.
Course Code	MTO 2001
Course Title | Essential Mathematics 2
Number of Credit | 30
Programme Stage | Two
Mode of Delivery | Distance Mode

Course summary

Essential mathematics 2 builds on the concepts and techniques in Essential mathematics 1 (MST124) to provide a complete foundation for higher-level mathematics studies. Students will be introduced to a broad range of enjoyable and essential topics, such as proof, differential equations, mechanics and discrete mathematics, as well as extending your knowledge of calculus and its applications. They will use mathematical software, and learn how to typeset mathematics. To study this module the students should have a sound knowledge of relevant mathematics as provided by Essential mathematics 1, in particular basic calculus.

Course Code	PHO 2002
Course Title | The Physical World
Number of Credit | 60
Programme Stage | Two
Mode of Delivery | Distance Mode

Course summary

This course will give you an essential view of the whole subject. Physics is perhaps the most exciting intellectual adventure of our age – discoveries being made now will change your life, and learning physics will change the way you think about the world. This wide-ranging introduction to physics and its applications covers classical mechanics; thermal physics and fluids; fields, waves and electromagnetism; relativity; and quantum physics (including solids, atoms, nuclei and particles) – setting many of them in their historical context so that you can appreciate the evolution of the subject. This course offers a widely accessible route into physics, suitable for students from a range of backgrounds. However, to successfully complete the course they do need some basic scientific and mathematical skills.
Course Code | MTH 3101
Course Title | Vector Analysis
Number of Credit | 4 credits
Programme Stage | Three
Mode of Delivery | Distance Mode

Course summary

This course introduces students to basic concepts of vector analysis. It provides an indication of the relevance and importance of theory and analysis in solving practical problems.

Course Code | MTH 3201
Course Title | Mathematical Methods
Number of Credit | 4 credits
Programme Stage | Three
Mode of Delivery | Distance Mode

Course summary

The main purpose of the course is the use of various mathematical concepts, principles, formulae, in ensuring rational and analytical thinking in students when they address every day practical issue. The thrust of the course anchors on elements of trigonometry, integration, transformation, differentiation, etc.
Course Code: MTO 3010
Course Title: Mathematical methods, models and modeling.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>MTO 3010</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course Title</td>
<td>Mathematical methods, models and modeling.</td>
</tr>
<tr>
<td>Number of Credit</td>
<td>60</td>
</tr>
<tr>
<td>Programme Stage</td>
<td>Three</td>
</tr>
<tr>
<td>Mode of Delivery</td>
<td>Distance Mode</td>
</tr>
</tbody>
</table>

Course Summary

The course is concerned with how to solve real problems by finding out how they are transformed into mathematical models and learning the methods of solution. This module covers classical mechanical models as well as some non-mechanical models such as population dynamics; and methods including vector algebra, differential equations, calculus (including several variables and vector calculus), matrices, methods for three-dimensional problems, and numerical methods. Teaching is supported and enhanced by use of a computer algebra package. This module is essential for higher level study of applied mathematics. To study this module students will need a sound knowledge of mathematics as developed in *Essential mathematics 1* (MST124) and *Essential mathematics 2* (MST125) or equivalent.

Course Code: PHO 3002
Course Title: Electromagnetism

<table>
<thead>
<tr>
<th>Course Code</th>
<th>PHO 3002</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course Title</td>
<td>Electromagnetism</td>
</tr>
<tr>
<td>Number of Credit</td>
<td>30</td>
</tr>
<tr>
<td>Programme Stage</td>
<td>Three</td>
</tr>
<tr>
<td>Mode of Delivery</td>
<td>Distance Mode</td>
</tr>
</tbody>
</table>

Course Summary

The course aims to give students a detailed understanding of the theory of electromagnetism, and to show how this theory can be encapsulated in Maxwell’s four equations and the Lorentz force equation. It will show that electromagnetism explains a wide range of physical phenomena, from the behaviour of light to the electrical and magnetic properties of materials, and that it has a broad range of applications, including many of technological relevance and of relevance to astrophysics and planetary science. Students studying the course will learn to appreciate the value of using advanced mathematical techniques (such as vector calculus) to describe aspects of the physical world, and they will practice using these techniques to find quantitative answers to problems.
Course Code	PHO 3003
Course Title | Waves, diffusion and variational principles
Number of Credit | 30
Programme Stage | Three
Mode of Delivery | Distance Mode

Course summary

The course introduces the subject of fluid mechanics, and teaches the methods required to solve simple flow problems. Broadly, about half of the course consists of mathematical methods and the other half is devoted to fluid mechanics. However, within the ‘methods’ units there is some appeal to ideas in the ‘fluids’ units for motivation and interpretation of the solutions.

The ‘methods’ half of the course extends the theory of ordinary and partial differential equations and of vector calculus begun in the prerequisite course (MST209). The ‘fluids’ half of the course is about the mathematical models which describe physical situations involving fluid-like substances. These models often involve vector quantities and partial differential equations.

Course Code	MTO 3002
Course Title | Mathematical methods and fluid mechanics.
Number of Credit | 30
Programme Stage | Three
Mode of Delivery | Distance Mode

Course summary

The course aims to introduce the subject of fluid mechanics, as a natural extension to the study of particle mechanics that they have undertaken in MST209. A necessary adjunct to this aim is the development of the further mathematical methods that are put to use in the various models of fluid motion. These methods are applicable also to other fields, and it is an equally important aim of the course that students should gain an understanding of them and facility in their application, extending beyond their immediate relevance to fluids. In terms of study time, there is intended to be an approximately 50:50 split between the fluid mechanics material and the associated mathematical methods. Because of its many applications, fluid mechanics is important for applied mathematicians, scientists and engineers, and the course aims to attract some students intending to study further in each of these areas.
Course Code
PHO 4001

Course Title
The Quantum world

Number of Credit
30

Programme Stage
Four

Mode of Delivery
Distance Mode

Course summary
The course provides a secure grounding in the physical principles, mathematical techniques and interpretation of quantum mechanics. Key ideas include wave mechanics, interference, linear algebra, the uncertainty principle, measurement probabilities, entanglement, perturbation theory, identical particles and the exclusion principle. The course strongly emphasizes applications of the basic theory to applied physics, chemistry and technology. The course will also survey recent evidence that tests and confirms the validity of quantum mechanics.

Course Code
PHO 4002

Course Title
Astrophysics

Number of Credit
30

Programme Stage
Four

Mode of Delivery
Distance Mode

Course summary
This course focuses on the astrophysics of stars and exoplanets – examining their properties, structure, evolution and the physical processes that occur within them. Virtual Learning Environment (VLE) and internet-based resources are used throughout the course. Students will experience real, collaborative astrophysical research, online with a small group of other students, to acquire, reduce, analyse and interpret data.
Course summary

This course comprises three parts that present, in turn, the theoretical basis for modern cosmology, described by Einstein’s special and general theories of relativity; cosmological observations of the local and distant Universe that are used to understand its structure and evolution; and high-energy phenomena in the Universe including interacting binary stars, active galactic nuclei and gamma-ray bursts.

Course summary

The aims of the course are to enable students to formulate problems in linear and non-linear optimization and to solve them. In the course students are introduced to the mathematical modeling techniques that are used to formulate and solve optimization problems. It seeks to teach the mathematical methods that are used to solve problems in linear programming and non-linear optimization and to teach the mathematics that underpin these methods. In doing this it compares the strengths and weaknesses of different methods. Also the course analyses the sensitivity of the solution to changes in the data. The course uses computers, where appropriate, to enhance the learning process and to aid problem.
Course summary

This module is about using ideas from discrete mathematics to model problems, and representing these ideas through diagrams. The word ‘graphs’ refers to diagrams consisting of points joined by lines. These points may correspond to chemical atoms, towns, electrical terminals or anything that can be connected in pairs. The lines may be chemical bonds, roads, wires or other connections. The main topics of mathematical interest are graphs and digraphs; network flows; block designs; geometry; codes; and mathematical modeling. Application areas covered include communications; structures and mechanisms; electrical networks; transport systems; social networks; and computer science.

Course summary

This module develops the theory of functions of a complex variable, emphasizing their geometric properties and indicating some applications. *Introduction* covers complex numbers; complex functions; sequences and continuity; and differentiation of complex functions. *Representation formulas* covers integration of complex functions; Cauchy’s theorem and Cauchy’s integral formula; Taylor series; and Laurent series. *Calculus of residues* covers residue calculus; winding number and the location of zeros of complex functions; analytic continuation; Euler’s gamma function and Riemann’s zeta function. Finally, *Applications* covers conformal mappings; fluid flows; complex analytic dynamics; Julia sets; and the Mandelbrot set. Students need a sound knowledge of differentiation and integration of real functions for this module.
Course Code | PHO 4070
Course Title | Application of Probability
Number of Credit | 30
Programme Stage | Four
Mode of Delivery | Distance Mode

Course summary
This module introduces models to describe patterns of events that occur in time (such as earthquakes), and in space (for instance, the occurrence of a species of plant). Situations that occur only at discrete time points, including the ruin of a gambler, are studied. Probability models are developed for those situations, such as the spread of an epidemic, in which events may occur at any time. The module ends with other situations involving probability including genetics and changes in stock market prices. Students are expected to be reasonably competent in calculus and algebra.
EDUCATIONAL AIMS

Professionals working in the IT sector bring many different kinds of expertise to their work. The aim of this degree is to equip students with the knowledge and skills they need to underpin a career in this sector. They will as well acquire and develop knowledge and understanding of the fundamental technologies and techniques and the issues involved in their application. It will also:

- enable the students to keep ahead in a rapidly changing subject area by helping you to develop as an independent learner
- develop relevant skills in communication, numeracy, and collaborative working
- imbue the qualities that come with being a graduate in any discipline: specialist knowledge, intellectual self-confidence and independence, analytical ability and the life-long learning skills needed to keep up with fast-changing technologies
- Enable them to apply their learning in private, social and professional life.

And, depending on the pathway they choose through the degree, the students may gain:

- practical experience in the use of information and communication technologies
- an understanding of the types of software and ICT systems that are now being constructed and used, such as distributed internet systems, intelligent systems and databases, and the digital network that underlies the internet itself
- a grasp of the key concepts of computing and of modern computer systems
- Skills in the main tasks that are carried out as software is built and maintained, such as analysis, design, programming and evaluation.

Entry Requirements:

CXC 002D - Criterion 1 - At least five (5) subjects CXC/CSEC General Proficiency (Grade 1, II or III) or equivalent, which must include English Language and Mathematics.

002D - Criterion 2 - Mature applicant (26 years and over) with lesser qualification but who has a pass at the University of Guyana Entrance Examination (UGEE).
Duration: Within the context of the Open Education philosophy the duration depends on the entry point and how fast an individual can progress. The programme is organised into four (4) stages; and is designed to be completed between 4 to 8 years.

Programme Evaluation and Grading Scheme: The programme will be evaluated through course work four (4) assignments with a weight of 10% each (total 40%) and final examination with a weight of 60%.

Programme Details

Students are expected to complete 370 credits of studies to be awarded the degree in four stages. This is arranged into 90 credits per stage.

<table>
<thead>
<tr>
<th>Stage</th>
<th>UG Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ENG 1105</td>
<td>Introduction to the Use of English</td>
<td>10</td>
</tr>
<tr>
<td>1</td>
<td>CSO1001</td>
<td>My digital life</td>
<td>60</td>
</tr>
<tr>
<td>1</td>
<td>CSO1002</td>
<td>Discovery Mathematics</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>100 credits</td>
</tr>
<tr>
<td>2</td>
<td>CSO2001</td>
<td>Technologies in practice</td>
<td>30</td>
</tr>
<tr>
<td>2</td>
<td>CSO2002</td>
<td>Object oriented Java programming</td>
<td>30</td>
</tr>
<tr>
<td>2</td>
<td>CSO2003</td>
<td>Algorithms, data structures and computability</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>90 credits</td>
</tr>
<tr>
<td>3</td>
<td>CSO3001</td>
<td>Designing applications with visual basic</td>
<td>30</td>
</tr>
<tr>
<td>3</td>
<td>CSO3002</td>
<td>Web Technologies</td>
<td>30</td>
</tr>
<tr>
<td>3</td>
<td>CSO3003</td>
<td>e-Business technologies: foundations and practice</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>90 credits</td>
</tr>
<tr>
<td>4</td>
<td>CSO4001</td>
<td>Relational database: theory and practice,</td>
<td>30</td>
</tr>
<tr>
<td>4</td>
<td>CSO4002</td>
<td>Technologies for digital media.</td>
<td>30</td>
</tr>
<tr>
<td>4</td>
<td>CSO4003</td>
<td>The Computing and IT Project</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>370 credits</td>
</tr>
</tbody>
</table>
Credits measure the student workload required for the successful completion of a study programme or qualification - one credit represents about 10 hours of study. In the programme, you'll be awarded credit after you have successfully completed a module. For example, if you study a 60-credit module and successfully pass it, you will be awarded the full 60 credits.

Grading Scheme:

<table>
<thead>
<tr>
<th>Grade</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>100 - 75%</td>
</tr>
<tr>
<td>B</td>
<td>74 - 65%</td>
</tr>
<tr>
<td>C</td>
<td>64 - 55%</td>
</tr>
<tr>
<td>D</td>
<td>54 - 40%</td>
</tr>
<tr>
<td>F</td>
<td>39 % & below</td>
</tr>
</tbody>
</table>

COURSE DESCRIPTION

<table>
<thead>
<tr>
<th>Course Code</th>
<th>ENG 1105</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course Title</td>
<td>Introduction to the Use of English</td>
</tr>
<tr>
<td>Number of Credit</td>
<td>4 (UG)</td>
</tr>
<tr>
<td>Programme Stage</td>
<td>One</td>
</tr>
<tr>
<td>Mode of Delivery</td>
<td>Distance Mode</td>
</tr>
</tbody>
</table>

Course summary

The Introduction to the Use of English is a foundation course required for students who enter the University of Guyana and are largely from Creole speaking backgrounds. The course introduces students to language as it is used in academic settings and targets the development of reading and writing skills for the tasks required at university. It aims to provide interactive settings for students to develop and increase their language awareness and attain confidence to aim for mastery of oral and written Standard English.
Course Code	CSO 1001
Course Title | My digital life
Number of Credit | 60
Programme Stage | One
Mode of Delivery | Distance Mode

Course summary
While you’re learning about tomorrow’s technology why not help create it? My digital life takes you on a journey from the origins of information technology through to the familiar computers of today, and on to tomorrow’s radical technologies. Students will get hands-on experience of the ubiquitous computing approaches that will become increasingly common over the next decade. They will also learn about the profound social and technological changes associated with information technology – changes that will affect every one of us. This key introductory Level 1 course will help the students prepare for these changes – it is an online survival kit for the twenty-first century.

Course Code	CSO 1002
Course Title | Discovering Mathematics
Number of Credit | 30
Programme Stage | One
Mode of Delivery | Distance Mode

Course summary
This key introductory Level 1 course provides a gentle start to the study of mathematics. It will help students to integrate mathematical ideas into their everyday thinking and build confidence in using and learning mathematics. They’ll cover statistical, graphical, algebraic, trigonometric and numerical concepts and techniques, and be introduced to mathematical modeling. Formal calculus is not included and they are not expected to have any previous knowledge of algebra. The skills introduced will be ideal if their plan to study more mathematics courses, such as Essential mathematics 1 (MST124). It is also suitable for users of mathematics in other areas, such as computing, science, technology, social science, humanities, business and education.
Course Code
CSO 2001

Course Title
Technologies in practice

Number of Credit
30

Programme Stage
Two

Mode of Delivery
Distance Mode

Course summary
This course provides an opportunity to sample some of the key areas in computing and information technology. Students will be introduced to three topics as tasters for their future studies and career: networking, Linux, and robotics. Studying these topics will enable them to develop essential skills if they are considering future employment in the computing and IT industry. Students will be applying what they learn to develop a portfolio, to demonstrate their skills and understanding in these areas to potential employers. By studying this key introductory Level 1 course students can also begin to explore where their future career ambitions or interests might lie.

Course Code
CSO 2002

Course Title
Object oriented Java programming

Number of Credit
30

Programme Stage
Two

Mode of Delivery
Distance Mode

Course summary
This course teaches the fundamental ideas behind the object-oriented approach to programming through the widely-used Java programming language. Concentrating on aspects of Java that best demonstrate object-oriented principles and good practice, students will gain a solid basis for further study of the Java language and object-oriented software development. They will need to be confident using a personal computer and have experience of writing small computer programs. The Level 1 course *My digital life (CSO1001)* would be ideal preparation. They should also be able to write short explanations of technical ideas in their own words, and be able to communicate with others electronically.
Course summary
The aim of this course is to help students become computational thinkers. Formulating a problem for efficient solution by computers is an extremely important skill. In this course, students will learn this skill: exploring a range of computing concepts; applying these to a variety of problems; and, in the process, becoming familiar with the popular Python programming language. This is the course for the students who are specializing in computing or if – whatever their field – they need to understand both the power and the limitations of computing. Though the focus is on the underlying ideas, students will also need to work with some mathematical concepts and notations.

Course summary
This course in object-oriented programming will teach students on how to design and write small applications using Visual Basic Express. Software applications discussed in the course range from a very simple traffic survey application, to more complex applications that are linked to a database. Roughly one third of the course consists of important practical Visual Basic Express programming exercises, using web-based units. The students‘ll also use printed course books that use a design language similar to Visual Basic (VB), to learn essential programming skills. They should be ready to study computing at Level 2 and ideally have some programming experience.
Course Code	CSO 3002
Course Title | Web Technologies
Number of Credit | 30
Programme Stage | Three
Mode of Delivery | Distance Mode

Course summary
The World Wide Web continues to provide a foundation for the development of a broad range of increasingly influential and strategic technologies, supporting a large variety of applications and services, both in the private and public sectors. There is a growing need for management and decision makers to gain a clearer understanding of the application development process, from planning through to deployment and maintenance. This course will give students insight into architectures, protocols, standards, languages, tools and techniques; an understanding of approaches to more dynamic and mobile content; and demonstrate how they can analyse requirements, plan, design, implement and test a range of web applications.

Course Code	CSO 3003
Course Title | e-Business technologies: foundations and practice
Number of Credit | 30
Programme Stage | Three
Mode of Delivery | Distance Mode

Course summary
E-business is booming as organisations strive to gain efficiencies through improved workflows, resource management, just-in-time provisioning and business relationships. This course explores the driving forces behind such developments, introducing fundamental technologies and protocols upon which new systems and services can be built – including Service Oriented Architectures (SOA), web services, XML and associated security standards. Case studies illustrate a range of business models and the business strategies behind the deployment of web services as well as providing insights into future developments. The students will explore the evolution of e-business surrounding ICT developments; use software tools to create schemas and web services; deploy collaborating applications; and consolidate your learning in a final project.
Course Code	CSO4001
Course Title | Relational database: theory and practice
Number of Credit | 30
Programme Stage | Four
Mode of delivery | Distance Mode

Course summary
This advanced computing course offers perspectives on relational databases. It introduces database management systems and the facilities required to store and access large collections of data in a shared user environment. This is followed by a theory of relations, underpinning topics such as data modeling and database architecture; the database language SQL; and the development of a practical database system. Also considered are issues surrounding the on-going development and application of relational database technologies, including the role of JAVA and XML. Students should already be familiar with program construction and using files and operating systems, as taught in the Level 2 computing courses.

Course Code	CSO4002
Course Title | Technologies for digital media
Number of Credit | 30
Programme Stage | Four
Mode of delivery | Distance Mode

Course summary
Downloading mp3 music files; exchanging digital photos; reading, watching and listening to news and entertainment on the web or your mobile phone … digital technologies are changing the way we conduct our private, social and business lives, and transforming our experience of media out of all recognition. This course investigates how this has come about, looking at the technologies behind digital media as well as some of the social, ethical and legal issues they raise. By the end of the studies, students will understand the possibilities and limitations of the technologies, the direction in which they are taking us, and how to keep on top of future developments.
Course summary

The computing and IT project enables you to explore computing, information and communications technologies in substantial depth and it is the compulsory project module for our computing and IT qualifications. It offers you practical experience of independent learning and reflective practice. Students will apply advanced principles and techniques to produce a solution to a problem which you have defined and write up your experience and findings in a substantial report. They will also be responsible for choosing their own topic, carrying out the project and writing it up, with the help of a supervisor to advise and guide them.
EDUCATIONAL AIMS

This degree aims to provide a broad knowledge and understanding of how the environmental impacts of technology in human activity systems can be shaped and managed in innovative ways. The broad skills in the use of systematic and systemic techniques to improve environmental management through ethical actions at individual, organisational and societal levels will also be taught.

More specifically, the degree aims to develop student knowledge and understanding of:

- the scientific, technical and socio-economic factors involved in the environmental impacts of complex human activity systems
- the impacts of energy use, waste management and environmental pollution and some of the technologies associated with them
- systematic and systemic thinking practices to better analyse complex human activity
- systems involving people and technologies.

It also aims to develop the following skills:

- use of tools, methods and technologies that can be used to better seek appropriate information, to enhance design tasks and to improve the ‘managing’ practices that will contribute to environmental improvements in complex human activity systems.
- synthesis, analysis and communication, utilising digital technologies to improve learning and performance.

Entry Requirements:

003D - Criterion 1 - At least five (5) subjects CXC/CSEC General Proficiency (Grade 1, II or III) or equivalent, which must include English Language and Mathematics.

003D - Criterion 2 - Mature applicant (26 years and over) with lesser qualification but who has a pass at the University of Guyana Entrance Examination (UGEE).
Duration: Within the context of the Open Education philosophy the duration depends on the entry point and how fast an individual can progress. The programme is organized into four (4) stages; and is designed to be completed between 4 to 8 years.

Programme Evaluation and Grading Scheme:
The programme will be evaluated through course work four (4) assignments with a weight of 10% each (total 40%) and final examination with a weight of 60%.

Programme Details
Students are expected to complete 370 credits of studies to be awarded the degree in four stages. This is arranged into 90 credits per stage.

Credits measure the student workload required for the successful completion of a study programme or qualification - one credit represents about 10 hours of study. Students’ will be awarded credit after they have successfully completed a module. For example, if you study a 60-credit module and successfully pass it, you will be awarded the full 60 credits.

<table>
<thead>
<tr>
<th>Stage</th>
<th>UG Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ENG 1105</td>
<td>Introduction to the Use of English</td>
<td>10</td>
</tr>
<tr>
<td>1</td>
<td>ESO 1001</td>
<td>Environmental journeys through a changing world</td>
<td>60</td>
</tr>
<tr>
<td>1</td>
<td>ESC 1002</td>
<td>Energy and sustainability</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100 credits</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>ESO 2001</td>
<td>Exploring science</td>
<td>60</td>
</tr>
<tr>
<td>2</td>
<td>ESO 2002</td>
<td>Environmental management 1</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td></td>
<td>90 credits</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>ESO 3001</td>
<td>Environmental science 1</td>
<td>60</td>
</tr>
<tr>
<td>3</td>
<td>ESO 3002</td>
<td>Renewable energy</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td></td>
<td>90 credits</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>ESO 4001</td>
<td>Environmental management 2</td>
<td>30</td>
</tr>
<tr>
<td>4</td>
<td>ESO 4002</td>
<td>Innovation: designing for a sustainable future</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td></td>
<td>90 credits</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>370 credits</td>
<td></td>
</tr>
</tbody>
</table>
Course Code | ENG 1105
Course Title | Introduction to the Use of English
Number of Credit | 10
Programme Stage | One
Mode of Delivery | Distance Mode

Course summary
The Introduction to the Use of English is a foundation course required for students who enter the University of Guyana and are largely from Creole speaking backgrounds. The course introduces students to language as it is used in academic settings and targets the development of reading and writing skills for the tasks required at university. It aims to provide interactive settings for students to develop and increase their language awareness and attain confidence to aim for mastery of oral and written Standard English.

Course Code | ESO 1001
Course Title | Environmental journeys through a changing world
Number of Credit | 60
Programme Stage | One
Mode of Delivery | Distance Mode

Course summary
Our world is changing fast – we are experiencing pressure from climate change, growing demands for finite resources and the extinction of many plants and animals. *Environment: journeys through a changing world* introduce you to environmental studies and the issues arising from environmental change. It shows how people are seeking positive solutions to environmental challenges where you live, in the Arctic, Africa, the Amazon and China. It also develops the key skills and concepts needed to understand our changing world. Students do not need any prior environmental knowledge to study this key introductory Level 1 module, just an interest in the future of our planet.
COURSE DESCRIPTION

<table>
<thead>
<tr>
<th>Course Code</th>
<th>ESO 1002</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course Title</td>
<td>Energy and sustainability</td>
</tr>
<tr>
<td>Number of Credit</td>
<td>30</td>
</tr>
<tr>
<td>Programme Stage</td>
<td>One</td>
</tr>
<tr>
<td>Mode of delivery</td>
<td>Distance Mode</td>
</tr>
<tr>
<td>Duration in weeks</td>
<td>Not applicable</td>
</tr>
</tbody>
</table>

Course summary
Are fossil fuels running out? Can nuclear power, carbon capture and storage or renewable energy sources provide solutions to the problem of global warming? How can we provide clean, safe, sustainable energy supplies for Guyana, and the world, despite increasing population levels and affluence? In this module students will look at the basic principles underlying the design and efficient use of energy and energy supply systems. Using a range of study materials and online activities, they will learn to use the appropriate scientific and mathematical techniques applied to energy related issues.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>ESO 2001</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course Title</td>
<td>Exploring science</td>
</tr>
<tr>
<td>Number of Credit</td>
<td>60</td>
</tr>
<tr>
<td>Programme Stage</td>
<td>Two</td>
</tr>
<tr>
<td>Mode of Delivery</td>
<td>Distance Mode</td>
</tr>
</tbody>
</table>

Course summary
This key introductory course is an ideal starting point for studying the natural sciences – astronomy and planetary science; biology; chemistry, earth and environmental science; and physics. Using a blend of text and online study materials, this wide-ranging course investigates the major scientific issues affecting human society in the twenty-first century. You will explore the fundamentals of modern science and develop important scientific concepts and skills to give you a solid foundation for studying science at a higher level. You should have some basic mathematical skills and knowledge of basic science concepts before you begin.
Environmental management can be thought of as managing our relationship with the environment. For all of us, this relationship is under increasing pressure. Why is environmental management vital for our sustainability? What kind of environmental management do we need now? The aim of this module is to explore systemic answers to these and related questions by introducing ideas, approaches and techniques for environmental management at individual, organisational and community levels. Recognising that our understanding of human-environment relations is changing, the module combines conventional with innovative systems approaches to environmental management.

Course summary
This broad course draws together biology, chemistry, Earth science and physics. Students will develop a holistic approach encompassing the processes, links, interactions and feedback mechanisms that operate within different environments. Two multimedia interactive field trips feature in the course, in which they explore an area visually, observe habitats, gather data and analyse their observations. By the end of the course students will be able to ‘lead’ a group of students through a new virtual environment; make critical analyses of landforms, soils and water flows; identify habitats of flora and fauna; and comment on anthropogenic influences and their likely consequences.
Course Code | ESO 3002
Course Title | Renewable energy
Number of Credit | 30
Programme Stage | Three
Mode of Delivery | Distance Mode

Course summary
What does a sustainable energy system look like? How might renewable energy provide a much greater proportion of our energy needs in the coming decades? Which technologies and designs for the various renewable energy sources will we rely on to help us decarbonise our energy systems and maintain a secure supply of affordable electricity and heat? In this module students'll explore these questions by systematically reviewing the eight main renewable energy technologies. With the help of study guides, they will develop their ability to practically apply this knowledge – especially for solar thermal, solar photovoltaic and wind.

Course Code | ESO 4001
Course Title | Environmental management 2
Number of Credit | 30
Programme Stage | Four
Mode of Delivery | Distance Mode

Course summary
This module focuses on innovations in and the facilitation of environmental management concepts and practice. Students will examine systems theories in detail and have the opportunity to investigate complex situations at domestic, organizational and community levels. Using a relevant local example as a case study, they will gain different perspectives of environmental management situations, the views of stakeholders, how these are represented and the impact of these views for further action and innovation. This module is designed to follow and build on the ideas, tools and their uses introduced in Environmental management 1.
How do successful innovations emerge? How do designers, technologists, managers and end-users create and develop new ideas, designs and inventions? How are these translated into marketable products? This module examines these questions, but its concerns go beyond innovation just for commercial and competitive advantage. It also deals with the need for environmentally friendly and sustainable innovations.
Bachelor of Social Science in Criminology and Psychology Studies - 004D

EDUCATIONAL AIMS

The Criminology strand of this degree aims to:

• introduce the students to a social constructionist perspective in social science
• teach them how to apply this perspective in analyses of developments in social and criminal justice policy
• enable the students to survey the shifts in criminal justice and social policy that have taken place since the late eighteenth century
• provide the students with an insight into the diverse and expanding boundaries of the discipline of criminology
• help them to communicate and to apply their knowledge in an appropriately scholarly manner to provide a sound basis for further study at third and postgraduate level.

The Psychology strand of this degree aims to provide the students with:

• an understanding of key concepts, theories, methods and debates in psychology
• an appreciation of different perspectives within psychology and the ability to evaluate them critically
• experience of designing, carrying out, analyzing and reporting psychological research using a range of research methods.

Both strands of this degree aim to provide the students with support and guidance to improve their own learning and performance and to develop as independent learners.

Entry Requirements

004D - Criterion 1- At least five (5) subjects CXC/CSEC General Proficiency (Grade 1, II or III) or equivalent, which must include English Language and Mathematics.

004D - Criterion 2- Mature applicant (26 years and over) with lesser qualification but who has a pass at the University of Guyana Entrance Examination (UGEE).
Duration:
Within the context of the Open Education philosophy the duration depends on the entry point and how fast an individual can progress. The programme is organized into four (4) stages; and is designed to be completed between 4 to 8 years.

Programme Evaluation and Grading Scheme:
The programme will be evaluated through course work four (4) assignments with a weight of 10% each (total 40%) and final examination with a weight of 60%.

Programme Details
Students are expected to complete 390 credits of studies to be awarded the degree in four stages. This is arranged into 90/100 credits per stage.

Credits measure the student workload required for the successful completion of a study programme or qualification - one credit represents about 10 hours of study. Students will be awarded credit after they have successfully completed a module. For example, if they study a 60-credit module and successfully pass it, they will be awarded the full 60 credits.

<table>
<thead>
<tr>
<th>Stage</th>
<th>UG Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ENG 1105</td>
<td>Introduction to the Use of English</td>
<td>10 credits</td>
</tr>
<tr>
<td>1</td>
<td>CPO 1001</td>
<td>Introducing the social sciences – part one</td>
<td>30</td>
</tr>
<tr>
<td>1</td>
<td>CPO 1002</td>
<td>Welfare, crime and society</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total: 100 credits</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>CPO 2001</td>
<td>Discovering psychology</td>
<td>30</td>
</tr>
<tr>
<td>2</td>
<td>CPO 2002</td>
<td>Exploring psychology</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total: 90 credits</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>CPO 3001</td>
<td>Social psychology: critical perspectives on self and others</td>
<td>60</td>
</tr>
<tr>
<td>3</td>
<td>SOC 3001</td>
<td>Social Science Methodology I</td>
<td>10 credits</td>
</tr>
<tr>
<td>3</td>
<td>CPO 3002</td>
<td>The Use of social science</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total: 130 credits</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>CPO 4001</td>
<td>Crime and justice</td>
<td>60</td>
</tr>
<tr>
<td>4</td>
<td>SOC 4001</td>
<td>Social Science Methodology II</td>
<td>10 credits</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total: 70 Credits</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total</td>
<td>390 credits</td>
</tr>
</tbody>
</table>
Grading Scheme:
A 100 - 75%
B 74 - 65%
C 64 - 55%
D 54 - 40%
F 39 % & below Fail

COURSE DESCRIPTION

<table>
<thead>
<tr>
<th>Course Code</th>
<th>ENG 1105</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course Title</td>
<td>Introduction to the Use of English</td>
</tr>
<tr>
<td>Number of Credit</td>
<td>10</td>
</tr>
<tr>
<td>Programme Stage</td>
<td>One</td>
</tr>
<tr>
<td>Mode of Delivery</td>
<td>Distance Mode</td>
</tr>
</tbody>
</table>

Course summary

The Introduction to the Use of English is a foundation course required for students who enter the University of Guyana and are largely from Creole speaking backgrounds. The course introduces students to language as it is used in academic settings and targets the development of reading and writing skills for the tasks required at university. It aims to provide interactive settings for students to develop and increase their language awareness and attain confidence to aim for mastery of oral and written Standard English.
Course summary
The module titled - Introducing the social sciences – part 1, introduce the students to university-level study of the social sciences by looking at the making of contemporary society. Subjects like psychology, social policy and criminology, geography and environment, politics and international studies, economics and sociology are briefly introduced. The course explored a range of topics that centre on questions of society’s relationship to the environment, of people’s identities, and issues of social order and governance. The aim is for the students to acquire personal and working life skills in addition to independent study skills.

Course Code | CPO 1001
Course Title | Introducing the social sciences – part one
Number of Credit | 30
Programme Stage | One
Mode of Delivery | Distance Mode

Course summary
The course is concerned with how the four key issues of – surveillance, social justice, security and community – help us understand the complex and dynamic relationship between welfare, crime and society. At the heart of the course is the suggestion that it is difficult, even impossible, to draw a clear or firm line between social welfare and crime control policies – whether it be in terms of policy intentions or effect. It equips the students with the knowledge and skills to perform their society security related functions.

Course Code | CPO 2002
Course Title | Welfare, crime and society
Number of Credit | 60
Programme Stage | One
Mode of Delivery | Distance Mode
Open/Distance Education Unit

<table>
<thead>
<tr>
<th>Course Code</th>
<th>CPO 2001</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course Title</td>
<td>Discovering psychology</td>
</tr>
<tr>
<td>Number of Credit</td>
<td>30</td>
</tr>
<tr>
<td>Programme Stage</td>
<td>Two</td>
</tr>
<tr>
<td>Mode of Delivery</td>
<td>Distance Mode</td>
</tr>
</tbody>
</table>

Course summary
Drawing on a wide range of studies and some classic pieces of psychological research, this key introductory Level 1 course provides an accessible and engaging introduction to the study of psychology. *Discovering psychology* explores the different ways in which psychologists investigate the human mind and behaviour, and shows the students how psychological research addresses real-life issues.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>CPO 2002</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course Title</td>
<td>Exploring psychology</td>
</tr>
<tr>
<td>Number of Credit</td>
<td>60</td>
</tr>
<tr>
<td>Programme Stage</td>
<td>Two</td>
</tr>
<tr>
<td>Mode of Delivery</td>
<td>Distance Mode</td>
</tr>
</tbody>
</table>

Course summary
The course aims to explore the way in which contemporary psychology offers insights into human behaviour and experience. It introduces a wide range of psychological theories and methods, demonstrating how they are typically applied in a number of contexts – both by professional psychologists and by us all in everyday life. Students will also learn how to carry out different types of psychological research.
Open/Distance Education Unit

Course Code | CPO 3001
Course Title | Social psychology: critical perspectives of self and others
Number of Credit | 60
Programme Stage | Three
Mode of Delivery | Distance Mode

Course summary
This Level 3 course uses traditional and cutting-edge social psychological theories to explore some of the most exciting and pressing issues we face in our complex, fast changing world. Topics in the course include crowds, emotions, conflict, relationships, the body, personality, obedience and group processes. Working with multimedia materials, students will develop advanced academic skills of critical evaluation and argument and will have the opportunity to conduct their own independent research project – consolidating and deepening your understanding. The course will also contribute to students’ personal development by encouraging them to reflect on their life in the light of social psychological evidence.

Course Code | SOC 3001
Course Title | Social Science Methodology 1
Number of Credit | 10
Programme Stage | Three
Mode of Delivery | Distance Mode

Course summary
This course serves to introduce students to the philosophical and methodological orientations of Social Science Methodology. It presents an opportunity for students to acquire the necessary competencies to conduct quantitative, qualitative and mixed methods research. The course examines different methodological models, theoretical orientations along with parametric and non-parametric statistical applications that should be employed when conducting social science research. Therefore, students are expected to develop a critical mind to accurately and objectively apply research methods in the production of empirical knowledge and contextually employ sociological theories to comprehend social phenomena.
Course Code	CPO 3002
Course Title | The Use of Social Science
Number of Credit | 60
Programme Stage | Three
Mode of Delivery | Distance Mode

Course summary
The narrative of this course focuses on the uses of social science in *making ‘private troubles’ into ‘public issues’* – making everyday dilemmas, predicaments and problems visible, actionable, and open to debate, contestation or resolution. In making everyday concerns into public issues, social science is used to disclose different forms of association out of which social life is woven. It is assumed in this module that a range of academic, commercial, governmental and non-governmental organisations produces social science knowledge. It is an interdisciplinary approach based on the acknowledgement that certain practices, controversies, and debates cross-cut formal disciplinary boundaries, and integrates social scientists into interdisciplinary fields of inquiry. The three themes of description, understanding, and enactment (DUE) are used as framework for taking actions based on our understanding of social issues.

Course Code	CPO 4001
Course Title | Crime and justice
Number of Credit | 60
Programme Stage | Four
Mode of Delivery | Distance Mode

Course summary
Crime, disorder, and justice are increasingly pressing concerns across the world. Fear of crime and proliferating global threats contribute to an increasing sense of insecurity. Local concerns – for example street crime – are now accompanied by twenty-first century global concerns about human trafficking, cyber-crime, terrorism and human rights violations to name but a few. These ‘threats’ have implications for justice, as the boundaries between crime control and civil liberties are being increasingly redrawn. Students’ll explore crime and justice in both global and local contexts, and in particular the way that crime and justice are being continually redefined by global economic, social and political change.
Course Code
SOC 4001

Course Title
Social Science Methodology II

Number of Credit
10

Programme Stage
Four

Mode of Delivery
Distance Mode

Course summary

This course will provide students with an understanding and practical (hands-on) experience in the crafting of a research proposal. It is a follow-up to SOC 3104 and is essentially task oriented; requiring students to choose a research question or problem, and select basic research methods, theories and statistical/analytical techniques applicable to their individual research project.

Students are trained to follow a specific format in a logical order to achieve the final out-put of a research proposal. It is expected that after successful completion of this course, students would have improved their competencies in proposal writing for the purpose of scientific inquiry and development/policy intervention projects.